Algorithms | PDF下载|ePub下载
类别: 计算机
作者:[美] Gayle Laakmann McDowell
出版社: 人民邮电出版社
原作名: Cracking the coding interview:150 programming questions and solutions,fifth edition
译者:李琳骁/漆犇
出版年: 2013-11
页数: 372
定价: 59.00元
装帧: 平装
ISBN: 9787115332912
出版社: 人民邮电出版社
原作名: Cracking the coding interview:150 programming questions and solutions,fifth edition
译者:李琳骁/漆犇
出版年: 2013-11
页数: 372
定价: 59.00元
装帧: 平装
ISBN: 9787115332912
内容简介 · · · · · ·
This text, extensively class-tested over a decade at UC Berkeley and UC San Diego, explains the fundamentals of algorithms in a story line that makes the material enjoyable and easy to digest. Emphasis is placed on understanding the crisp mathematical idea behind each algorithm, in a manner that is intuitive and rigorous without being unduly formal.
· · · · · ·
目录 · · · · · ·
0 Prologue 11
0.1 Books and algorithm
0.2 Enter Fibonacc
0.3 Big-O notatio15
Exercise
1 Algorithms with numbers 21
1.1 Basic arithmeti
1.2 Modular arithmeti
1.3 Primality testin
1.4 Cryptograph39
1.5 Universal hashin
Exercise . . 48
Randomized algorithms: a virtual chapter 39
2 Divide-and-conquer algorithms 55
2.1 Multiplicatio55
2.2 Recurrence relation
2.3 Mergesor0
2.4 Median
2.5 Matrix multiplicatio
2.6 The fast Fourier transfor
Exercise
3 Decompositions of graphs 91
3.1 Why graphs
3.2 Depth-first search in undirected graph
3.3 Depth-first search in directed graph
3.4 Strongly connected component
Exercise
4 Paths in graphs 115
4.1 Distance15
4.2 Breadth-first searc
4.3 Lengths on edge
4.4 Dijkstra’s algorith
4.5 Priority queue implementation
4.6 Shortest paths in the presence of negative edge
4.7 Shortest paths in dag
Exercise
5 Greedy algorithms 139
5.1 Minimum spanning tree
5.2 Huffman encodin
5.3 Horn formula
5.4 Set cover
Exercise
6 Dynamic programming 169
6.1 Shortest paths in dags, revisite
6.2 Longest increasing subsequence
6.3 Edit distanc
6.4 Knapsac
6.5 Chain matrix multiplicatio
6.6 Shortest path
6.7 Independent sets in tree
Exercise
7 Linear programming and reductions 201
7.1 An introduction to linear programmin
7.2 Flows in network
7.3 Bipartite matchin
7.4 Dualit
7.5 Zero-sum game
7.6 The simplex algorith
7.7 Postscript: circuit evaluatio
Exercise
8 NP-complete problems 247
8.1 Search problem
8.2 NP-complete problem
8.3 The reduction262 Exercise
9 Coping with NP-completeness 283
9.1 Intelligent exhaustive searc
9.2 Approximation algorithm
9.3 Local search heuristic
Exercise
10 Quantum algorithms 311
10.1 Qubits, superposition, and measuremen
10.2 The plan
10.3 The quantum Fourier transfor
10.4 Periodicit
10.5 Quantum circuit
10.6 Factoring as periodicit
10.7 The quantum algorithm for factorin
Exercise
Historical notes and further reading 331
· · · · · ·
0.1 Books and algorithm
0.2 Enter Fibonacc
0.3 Big-O notatio15
Exercise
1 Algorithms with numbers 21
1.1 Basic arithmeti
1.2 Modular arithmeti
1.3 Primality testin
1.4 Cryptograph39
1.5 Universal hashin
Exercise . . 48
Randomized algorithms: a virtual chapter 39
2 Divide-and-conquer algorithms 55
2.1 Multiplicatio55
2.2 Recurrence relation
2.3 Mergesor0
2.4 Median
2.5 Matrix multiplicatio
2.6 The fast Fourier transfor
Exercise
3 Decompositions of graphs 91
3.1 Why graphs
3.2 Depth-first search in undirected graph
3.3 Depth-first search in directed graph
3.4 Strongly connected component
Exercise
4 Paths in graphs 115
4.1 Distance15
4.2 Breadth-first searc
4.3 Lengths on edge
4.4 Dijkstra’s algorith
4.5 Priority queue implementation
4.6 Shortest paths in the presence of negative edge
4.7 Shortest paths in dag
Exercise
5 Greedy algorithms 139
5.1 Minimum spanning tree
5.2 Huffman encodin
5.3 Horn formula
5.4 Set cover
Exercise
6 Dynamic programming 169
6.1 Shortest paths in dags, revisite
6.2 Longest increasing subsequence
6.3 Edit distanc
6.4 Knapsac
6.5 Chain matrix multiplicatio
6.6 Shortest path
6.7 Independent sets in tree
Exercise
7 Linear programming and reductions 201
7.1 An introduction to linear programmin
7.2 Flows in network
7.3 Bipartite matchin
7.4 Dualit
7.5 Zero-sum game
7.6 The simplex algorith
7.7 Postscript: circuit evaluatio
Exercise
8 NP-complete problems 247
8.1 Search problem
8.2 NP-complete problem
8.3 The reduction262 Exercise
9 Coping with NP-completeness 283
9.1 Intelligent exhaustive searc
9.2 Approximation algorithm
9.3 Local search heuristic
Exercise
10 Quantum algorithms 311
10.1 Qubits, superposition, and measuremen
10.2 The plan
10.3 The quantum Fourier transfor
10.4 Periodicit
10.5 Quantum circuit
10.6 Factoring as periodicit
10.7 The quantum algorithm for factorin
Exercise
Historical notes and further reading 331
· · · · · ·
发表回复
要发表评论,您必须先登录。