《Graph Algorithms》Mark Needham | PDF下载|ePub下载
出版社: O’Reilly Media
副标题: Practical Examples in Apache Spark and Neo4j
出版年: 2019-6-4
页数: 249
定价: USD 69.99
装帧: Paperback
ISBN: 9781492047681
内容简介 · · · · · ·
Discover how graph algorithms can help you leverage the relationships within your data to develop more intelligent solutions and enhance your machine learning models. You’ll learn how graph analytics are uniquely suited to unfold complex structures and reveal difficult-to-find patterns lurking in your data. Whether you are trying to build dynamic network models or forecast real-world behavior, this book illustrates how graph algorithms deliver value—from finding vulnerabilities and bottlenecks to detecting communities and improving machine learning predictions.
This practical book walks you through hands-on examples of how to use graph algorithms in Apache Spark and Neo4j—two of the most common choices for graph analytics. Also included: sample code and tips for over 20 practical graph algorithms that cover optimal pathfinding, importance through centrality, and community detection.
Learn how graph analytics vary from conventional statistical analysis
Understand how classic graph algorithms work, and how they are applied
Get guidance on which algorithms to use for different types of questions
Explore algorithm examples with working code and sample datasets from Spark and Neo4j
See how connected feature extraction can increase machine learning accuracy and precision
Walk through creating an ML workflow for link prediction combining Neo4j and Spark
作者简介 · · · · · ·
Mark Needham is a graph advocate and Developer Relations Engineer at Neo4j. Mark helps users embrace graphs and Neo4j, building sophisticated solutions to challenging data problems. Mark has deep expertise in graph data having previously helped to build Neo4j’s Causal Clustering system. Mark writes about his experiences of being a graphista on a popular blog at markhneedham.com.
Amy Hodler is a network science devotee and AI and Graph Analytics Program Manager at Neo4j. She promotes the use of graph analytics to reveal structures within real-world networks and predict dynamic behavior. Amy helps teams apply novel approaches to generate new opportunities at companies such as EDS, Microsoft, Hewlett-Packard (HP), Hitachi IoT, and Cray Inc. Amy has a love for science and art with a fascination for complexity studies and graph theory.
发表回复
要发表评论,您必须先登录。