《实用机器学习》(美)亨里克・布林克(HenrikBr | PDF下载|ePub下载
实用机器学习 版权信息
- 出版社:机械工业出版社
- 出版时间:2017-06-01
- ISBN:9787111569220
- 条形码:9787111569220 ; 978-7-111-56922-0
实用机器学习 本书特色
本书介绍了实用机器学习的工作流程,主要从实用角度进行了描述,没有数学公式和推导。本书涵盖了数据收集与处理、模型构建、评价和优化、特征的识别、提取和选择技术、高级特征工程、数据可视化技术以及模型的部署和安装,结合3个真实案例全面、详细地介绍了整个机器学习流程。后,还介绍了机器学习流程的扩展和大数据应用。
本书可以作为程序员、数据分析师、统计学家、数据科学家解决实际问题的参考书,也可以作为机器学习爱好者学习和应用的参考书,还可以作为非专业学生的机器学习入门参考书,以及专业学生的实践参考书。
实用机器学习 内容简介
随着阿尔法狗在围棋领域高奏凯歌,人工智能领域已成为当前引人注目的风口,而机器学习又是这风口中的风头正劲的热点。本书从实战角度剖析了机器学习的知识原理,读者无需担心遇到难懂的数学公式和推导,就能够将机器学习的知识应用在自己熟悉的领域。《实用机器学习》还包含了三个机器学习真是应用的综合案例,本书所有代码资源都可以通过网络下载,读者还可以登录GITHUB与全球的机器学习爱好者共同交流本书的学习体验。
实用机器学习 目录
目录
推荐序
作者序
致谢
译者序
关于本书
作者简介
关于封面插图
第1部分机器学习工作流程
第1章什么是机器学习
1.1理解机器学习
1.2使用数据进行决策
1.2.1传统方法
1.2.2机器学习方法
1.2.3机器学习的五大优势
1.2.4面临的挑战
1.3跟踪机器学习流程:从数据到部署
1.3.1数据集合和预处理
1.3.2数据构建模型
1.3.3模型性能评估
1.3.4模型性能优化
1.4提高模型性能的高级技巧
1.4.1数据预处理和特征工程
1.4.2用在线算法持续改进模型
1.4.3具有数据量和速度的规模化模型
1.5总结
1.6本章术语
第2章实用数据处理
2.1起步:数据收集
2.1.1应包含哪些特征
2.1.2如何获得目标变量的真实值
2.1.3需要多少训练数据
2.1.4训练集是否有足够的代表性
2.2数据预处理
2.2.1分类特征
2.2.2缺失数据处理
2.2.3简单特征工程
2.2.4数据规范化
2.3数据可视化
2.3.1马赛克图
2.3.2盒图
2.3.3密度图
2.3.4散点图
2.4总结
2.5本章术语
第3章建模和预测
3.1基础机器学习建模
3.1.1寻找输入和目标间的关系
3.1.2寻求好模型的目的
3.1.3建模方法类型
3.1.4有监督和无监督学习
3.2分类:把数据预测到桶中
3.2.1构建分类器并预测
3.2.2非线性数据与复杂分类
3.2.3多类别分类
3.3回归:预测数值型数据
3.3.1构建回归器并预测
3.3.2对复杂的非线性数据进行回归
3.4总结
3.5本章术语
第4章模型评估与优化
4.1模型泛化:评估新数据的预测准确性
4.1.1问题:过度拟合与乐观模型
4.1.2解决方案:交叉验证
4.1.3交叉验证的注意事项
4.2分类模型评估
4.2.1分类精度和混淆矩阵
4.2.2准确度权衡与ROC曲线
4.2.3多类别分类
4.3回归模型评估
4.3.1使用简单回归性能指标
4.3.2检验残差
4.4参数调整优化模型
4.4.1机器学习算法和它们的调整参数
4.4.2网格搜索
4.5总结
4.6本章术语
第5章基础特征工程
5.1动机:为什么特征工程很有用
5.1.1什么是特征工程
5.1.2使用特征工程的5个原因
5.1.3特征工程与领域专业知识
5.2基本特征工程过程
5.2.1实例:事件推荐
5.2.2处理日期和时间特征
5.2.3处理简单文本特征
5.3特征选择
5.3.1前向选择和反向消除
5.3.2数据探索的特征选择
5.3.3实用特征选择实例
5.4总结
5.5本章术语
第2部分实 际 应 用
第6章案例:NYC出租车数据
6.1数据:NYC出租车旅程和收费信息
6.1.1数据可视化
6.1.2定义问题并准备数据
6.2建模
6.2.1基本线性模型
6.2.2非线性分类器
6.2.3包含分类特征
6.2.4包含日期-时间特征
6.2.5模型的启示
6.3总结
6.4本章术语
第7章高级特征工程
7.1高级文本特征
7.1.1词袋模型
7.1.2主题建模
7.1.3内容拓展
7.2图像特征
7.2.1简单图像特征
7.2.2提取物体和形状
7.3时间序列特征
7.3.1时间序列数据的类型
7.3.2时间序列数据的预测
7.3.3经典时间序列特征
7.3.4事件流的特征工程
7.4总结
7.5本章术语
第8章NLP高级案例:电影评论情感预测
8.1研究数据和应用场景
8.1.1数据集初探
8.1.2检查数据
8.1.3应用场景有哪些
8.2提取基本NLP特征并构建初始模型
8.2.1词袋特征
8.2.2用朴素贝叶斯算法构建模型
8.2.3tf-idf算法规范词袋特征
8.2.4优化模型参数
8.3高级算法和模型部署的考虑
8.3.1word2vec特征
8.3.2随机森林模型
8.4总结
8.5本章术语
第9章扩展机器学习流程
9.1扩展前需考虑的问题
9.1.1识别关键点
9.1.2选取训练数据子样本代替扩展性
9.1.3可扩展的数据管理系统
9.2机器学习建模流程扩展
9.3预测扩展
9.3.1预测容量扩展
9.3.2预测速度扩展
9.4总结
9.5本章术语
第10章案例:数字显示广告
10.1显示广告
10.2数字广告数据
10.3特征工程和建模策略
10.4数据大小和形状
10.5奇异值分解
10.6资源估计和优化
10.7建模
10.8K近邻算法
10.9随机森林算法
10.10其他实用考虑
10.11总结
10.12本章术语
10.13摘要和结论
附录常用机器学习算法
名词术语中英文对照
推荐序
作者序
致谢
译者序
关于本书
作者简介
关于封面插图
第1部分机器学习工作流程
第1章什么是机器学习
1.1理解机器学习
1.2使用数据进行决策
1.2.1传统方法
1.2.2机器学习方法
1.2.3机器学习的五大优势
1.2.4面临的挑战
1.3跟踪机器学习流程:从数据到部署
1.3.1数据集合和预处理
1.3.2数据构建模型
1.3.3模型性能评估
1.3.4模型性能优化
1.4提高模型性能的高级技巧
1.4.1数据预处理和特征工程
1.4.2用在线算法持续改进模型
1.4.3具有数据量和速度的规模化模型
1.5总结
1.6本章术语
第2章实用数据处理
2.1起步:数据收集
2.1.1应包含哪些特征
2.1.2如何获得目标变量的真实值
2.1.3需要多少训练数据
2.1.4训练集是否有足够的代表性
2.2数据预处理
2.2.1分类特征
2.2.2缺失数据处理
2.2.3简单特征工程
2.2.4数据规范化
2.3数据可视化
2.3.1马赛克图
2.3.2盒图
2.3.3密度图
2.3.4散点图
2.4总结
2.5本章术语
第3章建模和预测
3.1基础机器学习建模
3.1.1寻找输入和目标间的关系
3.1.2寻求好模型的目的
3.1.3建模方法类型
3.1.4有监督和无监督学习
3.2分类:把数据预测到桶中
3.2.1构建分类器并预测
3.2.2非线性数据与复杂分类
3.2.3多类别分类
3.3回归:预测数值型数据
3.3.1构建回归器并预测
3.3.2对复杂的非线性数据进行回归
3.4总结
3.5本章术语
第4章模型评估与优化
4.1模型泛化:评估新数据的预测准确性
4.1.1问题:过度拟合与乐观模型
4.1.2解决方案:交叉验证
4.1.3交叉验证的注意事项
4.2分类模型评估
4.2.1分类精度和混淆矩阵
4.2.2准确度权衡与ROC曲线
4.2.3多类别分类
4.3回归模型评估
4.3.1使用简单回归性能指标
4.3.2检验残差
4.4参数调整优化模型
4.4.1机器学习算法和它们的调整参数
4.4.2网格搜索
4.5总结
4.6本章术语
第5章基础特征工程
5.1动机:为什么特征工程很有用
5.1.1什么是特征工程
5.1.2使用特征工程的5个原因
5.1.3特征工程与领域专业知识
5.2基本特征工程过程
5.2.1实例:事件推荐
5.2.2处理日期和时间特征
5.2.3处理简单文本特征
5.3特征选择
5.3.1前向选择和反向消除
5.3.2数据探索的特征选择
5.3.3实用特征选择实例
5.4总结
5.5本章术语
第2部分实 际 应 用
第6章案例:NYC出租车数据
6.1数据:NYC出租车旅程和收费信息
6.1.1数据可视化
6.1.2定义问题并准备数据
6.2建模
6.2.1基本线性模型
6.2.2非线性分类器
6.2.3包含分类特征
6.2.4包含日期-时间特征
6.2.5模型的启示
6.3总结
6.4本章术语
第7章高级特征工程
7.1高级文本特征
7.1.1词袋模型
7.1.2主题建模
7.1.3内容拓展
7.2图像特征
7.2.1简单图像特征
7.2.2提取物体和形状
7.3时间序列特征
7.3.1时间序列数据的类型
7.3.2时间序列数据的预测
7.3.3经典时间序列特征
7.3.4事件流的特征工程
7.4总结
7.5本章术语
第8章NLP高级案例:电影评论情感预测
8.1研究数据和应用场景
8.1.1数据集初探
8.1.2检查数据
8.1.3应用场景有哪些
8.2提取基本NLP特征并构建初始模型
8.2.1词袋特征
8.2.2用朴素贝叶斯算法构建模型
8.2.3tf-idf算法规范词袋特征
8.2.4优化模型参数
8.3高级算法和模型部署的考虑
8.3.1word2vec特征
8.3.2随机森林模型
8.4总结
8.5本章术语
第9章扩展机器学习流程
9.1扩展前需考虑的问题
9.1.1识别关键点
9.1.2选取训练数据子样本代替扩展性
9.1.3可扩展的数据管理系统
9.2机器学习建模流程扩展
9.3预测扩展
9.3.1预测容量扩展
9.3.2预测速度扩展
9.4总结
9.5本章术语
第10章案例:数字显示广告
10.1显示广告
10.2数字广告数据
10.3特征工程和建模策略
10.4数据大小和形状
10.5奇异值分解
10.6资源估计和优化
10.7建模
10.8K近邻算法
10.9随机森林算法
10.10其他实用考虑
10.11总结
10.12本章术语
10.13摘要和结论
附录常用机器学习算法
名词术语中英文对照
实用机器学习 作者简介
Henrik Brink(亨里克·布林克)是一名数据科学家,对应用机器学习进行工业和学术应用开发有着丰富的经验。
Joseph Richards(约瑟夫W�崩聿樽龋┮彩且晃皇�据科学家,具有应用统计和预测分析方面的专业知识。Henrik和Joseph是Wise.io的联合创立者,Wise.io是一家提供工业机器学习解决方案的开发商。
Mark Fetherolf(马克·弗特罗夫)是数据管理和预测分析公司Numinary Data Science的创始人和总裁。他曾在社会科学研究、化学工程、信息系统性能、容量规划、有线电视和在线广告应用等方面担任统计师和分析数据库开发人员。