《商业分析(基于数据科学及人工智能技术的决策支持系统原书第11版)/数据分析与决策技术丛书》(美)拉姆什・沙尔达,杜尔森・德伦 | PDF下载|ePub下载
商业分析(基于数据科学及人工智能技术的决策支持系统原书第11版)/数据分析与决策技术丛书 版权信息
- 出版社:机械工业出版社
- 出版时间:2022-05-01
- ISBN:9787111704355
- 条形码:9787111704355 ; 978-7-111-70435-5
商业分析(基于数据科学及人工智能技术的决策支持系统原书第11版)/数据分析与决策技术丛书 本书特色
不拘泥于复杂的算法和数据分析技术细节,一本书带你贯穿商业数据分析四部曲
商业分析(基于数据科学及人工智能技术的决策支持系统原书第11版)/数据分析与决策技术丛书 内容简介
本书主要介绍用于支持企业决策的分析、数据科学和人工智能技术。除了传统的决策支持应用外,本书还介绍了人工智能、机器学习、机器人技术、聊天机器人、物联网和互联网技术。 全书分为五部分,**部分(~3章)概述分析与人工智能,第二部分(第4~7章)介绍预测性分析和机器学习,第三部分(第8和9章)深入研究规范性分析和大数据,第四部分(第10~13章)介绍机器人、社交网络、人工智能和物联网,第五部分(第14章)讨论分析与人工智能对安全、隐私和社会等方面的影响。 本书的读者对象包括数据分析、商务智能相关专业的学生和研究人员,以及商业分析、决策支持系统相关从业人员。
商业分析(基于数据科学及人工智能技术的决策支持系统原书第11版)/数据分析与决策技术丛书 目录
前言
致谢
作者简介
**部分 分析和人工智能简介
第1章 用于决策支持的商务智能、分析、数据科学和人工智能系统概述2
1.1 开篇小插曲:通力电梯和自动扶梯公司的智能系统是如何工作的3
1.2 不断变化的商业环境、决策支持与分析需求5
1.3 决策过程和计算机化决策支持框架8
1.4 计算机决策支持向商务智能/分析/数据科学的发展20
1.5 分析概述29
1.6 相关领域中的分析示例37
1.7 人工智能简介50
1.8 分析与人工智能的融合58
1.9 分析生态系统综述63
1.10 本书规划64
1.11 相关资源65
本章要点66
讨论67
参考文献67
第2章 人工智能:概念、驱动力、主要技术和商业应用70
2.1 开篇小插曲:INRIX解决了交通问题71
2.2 人工智能概论73
2.3 人类智能与计算机智能79
2.4 主要人工智能技术和衍生产品82
2.5 人工智能对决策的支持91
2.6 人工智能在会计中的应用95
2.7 人工智能在金融服务中的应用97
2.8 人工智能在人力资源管理中的应用101
2.9 人工智能在营销、广告和客户关系管理中的应用103
2.10 人工智能在生产运营管理中的应用107
本章要点109
讨论110
参考文献111
第3章 数据性质、统计建模和可视化113
3.1 开篇小插曲:SiriusXM通过数据驱动型营销吸引新一代的广播消费者114
3.2 数据的性质117
3.3 简单的数据分类法120
3.4 数据预处理的艺术和科学124
3.5 用于业务分析的统计建模133
3.6 用于推论统计的回归建模143
3.7 业务报告154
3.8 数据可视化157
3.9 不同类型的图表和图形162
3.10 视觉分析的出现165
3.11 信息仪表板172
本章要点177
讨论177
参考文献178
第二部分 预测性分析/机器学习
第4章 数据挖掘过程、方法和算法182
4.1 开篇小插曲:美国迈阿密戴德警察局使用预测性分析来预测和打击犯罪182
4.2 数据挖掘概念186
4.3 数据挖掘应用196
4.4 数据挖掘过程199
4.5 数据挖掘方法206
4.6 数据挖掘软件工具221
4.7 数据挖掘隐私问题、误解和失误227
本章要点231
讨论232
参考文献233
第5章 用于预测性分析的机器学习技术234
5.1 开篇小插曲:预测建模有助于更好地理解和管理复杂的医疗程序234
5.2 神经网络的基本概念237
5.3 神经网络架构241
5.4 支持向量机245
5.5 基于过程的支持向量机使用方法254
5.6 用于预测的*邻近法256
5.7 朴素贝叶斯分类法260
5.8 贝叶斯网络268
5.9 集成建模274
本章要点286
讨论287
参考文献288
第6章 深度学习和认知计算290
6.1 开篇小插曲:利用深度学习和人工智能打击欺诈291
6.2 深度学习介绍294
6.3 “浅”神经网络基础299
6.4 基于神经网络系统的开发流程308
6.5 阐明ANN黑箱原理314
6.6 深度神经网络317
6.7 卷积神经网络323
6.8 循环网络和长短期记忆网络334
6.9 实现深度学习的计算机框架341
6.10 认知计算344
本章要点354
讨论356
参考文献357
第7章 文本挖掘、情感分析和社交分析360
7.1 开篇小插曲:Amadori集团将消费者情感转化为近实时销售361
7.2 文本分析和文本挖掘概述363
7.3 自然语言处理369
7.4 文本挖掘应用375
7.5 文本挖掘过程382
7.6 情感分析390
7.7 Web挖掘概述401
7.8 搜索引擎406
7.9 Web使用情况挖掘(Web分析)413
7.10 社交分析419
本章要点428
讨论429
参考文献430
第三部分 规范性分析和大数据
第8章 规范性分析:优化与仿真434
8.1 开篇小插曲:费城学区使用规范性分析来寻找外包巴士路线的*佳解决方案435
8.2 基于模型的决策436
8.3 决策支持的数学模型的结构442
8.4 确定性、不确定性和风险444
8.5 电子表格决策模型446
8.6 数学规划优化450
8.7 多重目标、灵敏度分析、假设分析和单变量求解460
8.8 基于决策表和决策树的决策分析464
8.9 仿真简介466
8.10 视觉交互仿真473
本章要点478
讨论479
参考文献479
第9章 大数据、云计算和位置分析:概念和工具481
9.1 开篇小插曲:在电信公司中使用大数据方法分析客户流失情况482
9.2 大数据定义485
9.3 大数据分析基础490
9.4 大数据技术494
9.5 大数据与数据仓库503
9.6 内存分析和Apache Spark508
9.7 大数据和流分析514
9.8 大数据提供商和平台519
9.9 云计算和业务分析526
9.10 基于位置的组织分析537
本章要点544
讨论544
参考文献545
第四部分 机器人、社交网络、人工智能与物联网
第10章 机器人:工业和消费者领域的应用548
10.1 开篇小插曲:机器人为患者和儿童提供情感支持548
10.2 机器人技
商业分析(基于数据科学及人工智能技术的决策支持系统原书第11版)/数据分析与决策技术丛书 作者简介
杜尔森・德伦(Dursun Delen),俄克拉何马州立大学博士,是Spears和Patterson商务分析主席,健康系统创新中心的研究主任,俄克拉何马州立大学管理科学和信息系统教授。在他开始学术生涯之前,他为一家私营研究和顾问公司――Knowledge Based Systems工作,该公司位于得克萨斯州。他作为一位数据科学家工作了5年,在此期间,他主持了许多决策支持和其他信息系统相关的研究项目,由联邦机构资助,如DOD、NASA、NIST和DOE。德伦博士的研究发表在许多核心期刊上,包括Decision Support Systems、Communications of the ACM、Computers and Operations Research、Computers in Industry、Journal of Production Operations Management、Artifi Intelligence in Medicine和Expert Systems with Applications等。他出版了4本教材:Advanced Data Mining Techniques(Springer,2008)、Decision Support and Business Intelligence Systems(Prentice Hall,2010)、Business Intelligence:A Managerial Approach(Prentice Hall,2010)、Practical Text Mining(Elsevier,2012)。他经常被邀请参加国内和靠前会议来报告数据/文本挖掘、商务智能、决策支持系统和知识管理的相关主题内容。他在第四届关于网络计算和增强信息系统管理靠前会议(2008年9月2~4日在韩国首尔)上是共同主席,在各种信息系统会议作为主席服务。他是International Journal of Experimental Algorithms、International Journalof RF Technologies和Journal of Decision Analytics的副主编。同时也是5家其他技术期刊的编委。他的研究和教学领域包括数据与文本挖掘、决策支持系统、知识管理、商务智能及企业建模。